3.加强对知识交汇点问题的训练
课本上每章的习题往往是为巩固本章内容而设置的,所用知识相对比较单一。复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。
要形成有效的知识网络。知识网络就是知识之间的基本联系,它反映知识发生的过程,知识所要回答的基本问题。构建知识网络的过程是一个把厚书(课本)读薄的过程;同时通过综合复习,还应该把薄书读厚,这个厚,应该比课本更充实,在课本的基础上加入一些更宏观的认识,更个性化的理解,更具操作性的解题经验。
综合性的问题往往是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。要解决这类考题,关键在于弄清题意,将之分解,找到突破口。由于课程内容的变化,使知识的交汇点出现了新动向,如从概率统计中产生应用型试题,从导数应用中与函数性质的联袂,从解析几何中产生与平面向量的联系、立体几何、三角函数、数列内容中渗透相关知识的综合考查(如三角与向量的结合、数列与不等式结合、概率与数列内容的结合)等。
4. 不搞题海取胜,注重题目的质量和处理水平
如果采取题海战术、猜题押题等手段来应付升学考试,其结果是步入了“低效率、重负担、低质量”的恶性循环的怪圈。应该控制总题量,不依靠题海取胜,当处理的题目达到一定的数量后,决定复习效果的关键性因素就不再是题目的数量,而在于题目的质量和处理水平。
①考生对立意新颖、结构精巧的新题予以足够的重视,要保证有相当数量的这类题目,但也不一味排斥一些典型的所谓“新题”、“热题”。传统的好题,包括课本上的一些例、习题应成为保留节目。陈题新解、熟题重温可使学生获得新的感受和乐趣。
②要控制题目的难度,在“稳”、“实”上狠下功夫,那些只有运用“特技”才能解决的“偏、怪、奇”的题,坚决摒弃。
③要讲究讲评试卷的方法和技巧。
题目训练更强调收效。考生学好数学就必须做题,各种类型题目的训练是必须的,但决不能搞题海战术。
做题的目的是训练分析问题解决问题的数学能力,是检验对数学基本概念、公式的掌握和运用能力。因此,做题一定要强调有收效,不要做了也不理解,甚至不知道做对没有。强化通性通法的训练,让自己达到一做就能得分的境地。
要善于在解题后进行归纳总结,不要盲目地毫无针对性地要求学生做题,更没有必要大量反复地做同一类型的题,要认识到理解了10道题的收效要大于匆忙做100道重复的题。重要的是能够举一反三,融会贯通。
5.注意归纳总结常用的数学思想方法
数学思想方法较之数学基础知识,有更高的层次,具有观念性的地位,考生应注意归纳总结。主要思想方法有:函数与方程,化归与转化,分类与整合,数形结合与分离,有限与无限,特殊与一般。作为数学思想方法的具体表现形式,可以作为解题手段的基本方法有:代数变换、几何变换、逻辑推理三类。
代数变换有:配方法、换元法、待定系数法、公式法、比值法等。几何变换有:平移、对称、延展、放缩、分割、补形等。逻辑推理主要有:综合法、分析法、反证法、枚举法和数学归纳法。
对这些数学思想方法,考生都要注意弄清它们的主要表现、基本步骤和注意事项。
6. 积累解题经验,提高解题水平,注重良好习惯的培养
解题经验主要包括:对某种类型的问题我们应该如何思考,怎样解最简捷?比如:如何证明函数的单调性?怎样求函数的最大(小)值?如何证明直线与平面垂直?怎样求直线与平面的角?这些都是构成高考题的一些基本要素;又比如:复合函数的单调性有什么特点?圆锥曲线的通径、渐进线有什么特征?这都是有效解题的一些基本结论。
当然不是要陷入题型分类与结论记忆之中,但记忆与把握一些基本思路和常用结论(数据),还是十分必要的,这对提高学生解题的起点和速度,增强看问题的深度十分有益。
考生注重良好习惯的培养,包括:
(1)速度。考试的时间紧,是争分夺秒,复习一定要有速度意识,加强速度训练,用时多即使对了也是“潜在丢分”,要避免“小题大做”。
(2)计算。数学高考历来重视运算能力,虽近年试题计算量略有降低,但并未削弱对计算能力的要求。运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理。
(3)表达。在以中低档题为主体的高考中,获得正 确的思路相对容易,如何准确而规范地表达就变得重要了,因此,复习中要有书写要求,模拟考试后要求交“满分卷”。
训练有条理的书面表达能力。因为书写不规范,没条理失分的现象十分普遍,表现在:丢三拉四、只求三言两语,无关键步骤(方程),不求推理有据,更谈不上整齐、清洁、美观。要求在每一节课都要按高考答题格式板书一道题的全部解答过程的做法要落实。
7.强化对文科数学复习的研究
文科学生,是高中数学学习中的一个特殊群体,因而提高文科数学复习质量,对高中数学教学质量的大面积提高有极其重要的意义。
对文科数学复习,建议采用“低起点,多层次,快反馈,树信心”几个方面的措施来提高质量。
由于大多数文科学生的数学学习水平较理科学生要低,因此在进行文科数学的复习时需要教师把标高降低,准确的标高有利于教学的顺利实施,我们应树立动态的标高观,不同的学校、同一个学校的不同班级、同一个班级的不同层次的学生,标高应该不同。
在教学中应采用“低起点的教学设计,用中低档问题进行训练的策略,采用分层教学的方式,坚持对学习情况快速反馈”,以进一步树立他们学好数学的信心。
“失败是成功之母!”但“成功更是成功之母!”
希望全体文科数学教师认真研究所执教的文科班学生的数学学习情况,采用适合自己学生的教学方法,通过扎实的工作,以切实提高文科数学的复习质量。
三、复习中应该注意的问题
(一)狠抓基础,建构良好知识结构和认知结构体系
良好的知识结构是高效应用知识的保证。以课本为主,重新全面梳理知识、方法,注意知识结构的重组与概括,揭示其内在的联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识、方法,而是自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,融汇代数、三角、立几、解几于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。如面对代数中的“四个二次”:二次三项式,一元二次方程,一元二次不等式,二次函数时,以二次方程为基础、二次函数为主线,通过联系解析几何、三角函数、带参数的不等式等典型重要问题,建构知识,发展能力。
高考数学试题十分重视对学生能力的考查,而这种能力是以整体的、完善的知识结构为前提的。国家教育部考试中心试题评价组《全国普通高考数学试题评价报告》明确指出:“试题注意数学各部分内容的联系,具有一定的综合性。加强数学各分支知识间内在联系的考查……要求考生把数学各部分作为一个整体来学习、掌握,而不机械地分为几块。这个特点不但在解答题中突出,而且在选择题中也有所体现。”
传统的数学总复习是将各章划分为若干课时,一个课时一个中心议题。这种做法有它的可取之处,但其不足也是很明显的:第一,它将完整的知识结构切碎了、拆散了,不利于形成完整的知识体系;第二,它受制于各个课时的长度,而各个议题的容量并不都是相等的,那么在复习中势必将短的拉长,将长的截短,难以做到重点突出;第三,它每课时都要追求“高潮”,可是这些高潮与高考的要求又不尽吻合,因而造成教学的浪费;第四,每个课时都要配置选择题、填空题和解答题,而事实上有的议题并不需要设置解答题;第五,它受每个课时的制约,综合运用各部分知识的空间较狭窄。
以章为一个单元,先在学生复习课本知识的基础上,由师生共同串讲梳理,从而建构既以本章为主线又广涉有关各章的知识网络系统,其次让学生进行客观性题目的练习,再讲练主观性题目。这样的做法可以在更广阔的知识空间里自由驰骋,有利于培养学生整体驾驭知识的能力,它不受每个课时的约束,从全章考虑进行统筹安排,更便于重点、热点的强化,难点的突破,而且做到经济实惠,可取得最大的复习效益。
(二)全面复习、突出重点、狠抓落实、夯实基础
1. 继续强化对基础知识的理解。
掌握抓住重点知识抓住薄弱的环节和知识的缺陷,全面搞好基础知识全面搞好基础知识的复习。
中学数学的重点知识包括:
(1)函数的基础理论应用
(2)三角函数和三角变换
(3)不等式的求解、证明和综合应用
(4)数列的基础知识和应用
(5)直线与平面的位置关系
(6)曲线方程的求解
(7)直线、圆锥曲线的性质和位置关系
(8)新增内容有:向量的基础知识和应用、概率与统计的基础知识和应用、初等函数的导数和应用
2. 对基础知识的复习应突出抓好两点:
(1)深入理解数学概念,正确揭示数学概念的本质,属性和相互间的内在联系,发挥数学概念在分析问题和解决问题中的作用。
(2)对数学公式、法则、定理、定律务必弄清其来龙去脉,掌握它们的推导过程,使用范围,使用方法(正用逆用、变用)熟练运用它们进行推理,证明和运算。
3. 构造知识网络。
系统地对数学知识进行整理、归纳、沟通知识间的内在联系,形成纵向、横向知识链,构造知识网络,从知识的联系和整体上把握基础知识。例如以函数为主线的知识链。又如直线与平面的位置关系中“平行”与“垂直”的知识链。
4. 认真领悟数学思想,熟练掌握数学方法,正确应用它们分析问题和解决问题。
《考试说明》指出:数学思想和数学方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识的发生,发展和应用的过程中,因此对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查反映考生对数学思想和方法理解和掌握的程度。
数学思想数学在高考中涉及的数学思想有以下四种:
①分类讨论思想:
分类讨论思想是以概念的划分,集合的分类为基础的解题思想,是一种逻辑划分的思想方法。分类讨论的实质是“化整为零、积零为整”。科学分类的基本原则是正确,不重不漏,合理,便于讨论,科学分类的步骤是:明确对象的全体——确定分类标准——科学分类——逐一讨论——归纳小结得出结论。
②函数与方程的思想:
函数与方程是贯穿中学数学的主线,函数是客观实践中量与量之间相互依存,相互制约的关系的反映,方程则是这种关系在某种特定条件下的具体形式。
③变换与转化思想:
在研究和解决一些数学问题时常采用某种手段进行命题变换,以达解决问题的目的。
常见有以下三个方面:
把复杂问题通过变换转化为较简单的问题;
把较难问题通过变换转化为较易的问题;
把没解决问题通过变换转化为已解决的问题。
常见转化方法有:直接转化法、换元转化法、数形结合转化法、构造模型转化法、参数转化法、类比转化法。
④数形结合思想:
数形结合思想是应用客观事物中数与形的对应关系,把抽象的数学语言与直观的图形结合起来:寻求解题的切入点;简化解题过程;转换命题;验证结论的正确与完整。
数形结合的思想就是利用图形进行思维简缩,对选择、填空题的求解住住能大大简化思维过程,争取解题时间。
数形结合住住借助:
函数与图像的对应关系;
方程与曲线的对应关系;
以几何元素,几何条件建立的概念;
数与式的结构具有明显的几何意义。