1.已知正整数列{an}对任意p,q∈N*,都有ap+q=ap+aq,若a2=4,则a9=( )
A. 6 B. 9
C. 18 D. 20
解析:∵a2=a1+1=a1+a1=4,∴a1=2,∴a9=a8+1=a8+a1=2a4+a1=4a2+a1=18.
答案:C
2.数列{an}的前n项积为n2,那么当n≥2时,{an}的通项公式为( )
A.an=2n-1 B.an=n2
C.an= D.an=
解析:设数列{an}的前n项积为Tn,则Tn=n2,当n≥2时,an==.
答案:D
3.数列{xn}中,若x1=1,xn+1=-1,则x2014=( )
A.-1 B.-