例1 已知函数f(x)=xsin x-.
判断函数f(x)在(0,π)内的零点个数,并加以证明.
解 f(x)在(0,π)内有且只有两个零点.证明如下:
∵f′(x)=sin x+xcos x,当x∈时,f′(x)>0,
f(x)=xsin x-,从而有f(0)=-<0,f=>0,
又f(x)在上的图象是连续不间断的.
所以f(x)在内至少存在一个零点.
又f(x)在上单调递增,故f(x)在内有且只有一个零点.
当x∈时,令g(x)=f′(x)=sin x+xcos x.
由g=1>0,g(π)=-π<0,且g(x)在上的图象是连续不间断的,
故存在m∈,
使得g(m)=0.