1.两条异面直线所成的角
设异面直线l1,l2所成的角为θ,其方向向量分别为u,v,
则cos θ=|cos〈u,v〉|==.
2.直线和平面所成的角
直线AB与平面α相交于B,设直线AB与平面α所成的角为θ,直线AB的方向向量为u,平面α的法向量为n,则sin θ=|cos〈u,n〉|==.
3.平面与平面的夹角
(1)两平面的夹角:平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面 β的夹角.
(2)两平面夹角的计算:设平面α,β的法向量分别是n1,n2,平面α与平面β的夹角为θ,则cos θ=|cos〈n1,n2〉|==.
4.点P到直线l的距离
设=a,u是直线l的单位方向向量,则向量在直线l上的投影向量=(a·u)u.在Rt△APQ中,由勾股定理,得PQ==.