1.有关单调性的常用结论
在公共定义域内,增函数+增函数=增函数;减函数+减函数=减函数;增函数-减函数=增函数;减函数-增函数=减函数.
2.函数y=f(x)(f(x)>0或f(x)<0)在公共定义域内与y=-f(x),y=的单调性相反.
1.思考辨析(在括号内打“√”或“×”)
(1)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.( )
(2)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( )
(3)函数y=的单调递减区间是(-∞,0)∪(0,+∞).( )
(4)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在区间D上是增函数.( )
答案 (1)× (2)× (3)× (4)√
解析 (1)错误,应对任意的x1<x2,都有f(x1)<f(x2)成立才可以.
(2)错误,反例:f(x)=x在[1,+∞)上为增函数,但f(x)=x的单调区间是(-∞,+∞).
(3)错误,此单调区间不能用“∪”连接,故单调递减区间为(-∞,0)和(0,+∞).