考点一 利用正弦定理、余弦定理解三角形
核心提炼
1.正弦定理:在△ABC中,===2R(R为△ABC的外接圆半径).变形:a=2Rsin A,b=2Rsin B,c=2Rsin C,sin A=,sin B=,sin C=,a∶b∶c=sin A∶sin B∶sin C等.
2.余弦定理:在△ABC中,a2=b2+c2-2bccos A.
变形:b2+c2-a2=2bccos A,cos A=.
3. (1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.
(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.
1.(2021·新高考1)记 是内角 , , 的对边分别为 , , .已知 ,点 在边 上, .
(1)证明: ;
(2)若 ,求 .