知识点一 正弦函数的图象
在[0,2π]上任取一个值x0,如何利用正弦函数的定义,确定正弦函数值sin x0,并画出点T(x0,sin x0)?
知识梳理 (1)如图,在直角坐标系中画出以原点O为圆心的单位圆,⊙O与x轴正半轴的交点为A(1,0).在单位圆上,将点A绕着点O旋转x0弧度至点B,根据正弦函数的定义,点B的纵坐标y0=sin_x0.由此,以x0为横坐标,y0为纵坐标画点,即得到函数图象上的点T(x0,sin x0).
若把x轴上从0到2π这一段分成12等份,使x0的值分别为0,,,,…,2π,它们所对应的角的终边与单位圆的交点将圆周12等分,再按上述画点T(x0,sin x0)的方法,就可画出自变量取这些值时对应的函数图象上的点(如图).
将函数y=sin x,x∈[0,2π]的图象不断向左、向右平移(每次移动2π个单位长度),就可以得到正弦函数y=sin x,x∈R的图象(如图).
正弦函数的图象叫做正弦曲线(sine curve),是一条“波浪起伏”的连续光滑曲线.
(2)五点法:在函数y=sin x,x∈[0,2π]的图象上,以下五个点:
(0,0),,(π,0),,(2π,0)
在确定图象形状时起关键作用.描出这五个点,函数y=sin x,x∈[0,2π]的图象形状就基本确定了.因此,在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图.