1.设f(x)为可导函数,且满足limΔx→0 f?1?-f?1-Δx?Δx=-1,则曲线y=f(x)在点(1,f(1))处的切线的斜率是( )
A.1 B.-1
C.12 D.-2
解析:∵limΔx→0 f?1?-f?1-Δx?Δx=-1,∴limΔx→0 f?1-Δx?-f?1?-Δx=-1,∴f′(1)=-1.
答案:B
2.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )
A.a=1,b=1 B.a=-1,b=1
C.a=1,b=-1 D.a=-1,b=-1
解析:∵点(0,b)在直线x-y+1=0上,∴b=1.
又∵函数y=x2+ax+b在x0=0处的切线方程是x-y+1=0,
∴limΔx→0 Δx2+aΔx+b-bΔx=a=1,故选A.
答案:A
3.抛物线y=14x2在点Q(2,1)处的切线方程是( )
A.x-y+1=0 B.x-y-1=0
C.x+y+1=0 D.x+y-1=0
解析:∵点Q(2,1)在抛物线上,
∴由导数的定义可得,
limΔx→0 ΔyΔx=limΔx→0 14?2+Δx?2-14×22Δx=limΔx→0 (1+14•Δx)=1,
∴y=14x2在点Q(2,1)处的导数为1.
∴所求的切线方程为y-1=x-2,即x-y-1=0.
答案:B