章末综合测评(二) 点、直线、平面之间的位置关系
(满分:150分 时间:120分钟)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列推理错误的是( )
A.A∈l,A∈α,B∈l,B∈α⇒l⊂α
B.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l⊄α,A∈l⇒A∉α
D.A∈l,l⊂α⇒A∈α
C [若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.]
2.下面给出了四个条件:
①空间三个点;②一条直线和一个点;③和直线a都相交的两条直线;④两两相交的三条直线.
其中,能确定一个平面的条件有( )
A.3个 B.2个 C.1个 D.0个
D [①当空间三点共线时不能确定一个平面;②点在直 线上时不能确定一个平面;③两直线若不平行也不相交时不能确定一个平面;④三条直线交于一点且不共面时不能确定一个平面. 故以上4个条件都不能确定一个平面.]
3.在长方体ABCDA1B1C1D1中,异面直线AB,A1D1所成的角等于( )
A.30° B.45° C.60° D.90°
D [由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.]
4.已知a,b,c是直线,则下面四个命题:
①若直线a,b异面,b,c异面,则a,c异面;
②若直线a,b相交,b,c相交,则a,c相交;
③若a∥b,则a,b与c所成的角相等.
其中真命题的 个数为( )
A.0 B.3 C.2 D.1
D [异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确.]
5.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的 大小为( )
A.30° B.45° C.60° D.90°
B [当三棱锥DABC的体积最大时,平面DAC⊥ABC,取AC的中点O,连接OD,OB,则△DBO是等腰直角三角形,即∠DBO=45°.]
6.设l为直线,α,β是两个不同的平面.下列命题中正确的是( )
A.若l∥α,l∥β,则α∥β
B.若l⊥α,l⊥β,则α∥β
C.若l⊥α,l∥β,则α∥β
D.若α⊥β,l∥α,则l⊥β
B [选项A,平行于同一条直线的两个平面也可能相交,故选项A错误;选项B,垂直于同一直线的两个平面互相平行,选项B正确;选项C,由条件应得α⊥β,故选项C错误;选项D,l与β的位置不确定,故选项D错误.故选B.]
7.如图,点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB的中点, 则EF的长是( )
A.1 B.
C. D.
B [取CB的中点D,连接ED,DF,则∠EDF(或其补角)为异面直线SB与AC所成的角,即∠EDF=90°.在△EDF中,ED=SB=1,DF=AC=1,所以EF==.]
8.设α,β为两个平面,则α∥β的充要条件是( )
A.α内有无数条直线与β平行
B.α内有两条相交直线与β平行
C.α,β平行于同一条直线
D.α,β垂直于同一个平面
B [若α∥β,则α内有无数条直线与β平行,反之不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一平面,则α与β可以平行也可以相交,故A,C,D中条件均不是α∥β的充要条件.根据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之成立.因此B中条件是α∥β的充要条件.故选B.]