第4章 章末综合提升
[巩固层·知识整合]
[提升层·题型探究]
求圆的方程
【例1】 求圆心在圆+y2=2上,且与x轴和直线x=-都相切的圆的方程.
[解] 设圆心坐标为(a,b),半径为r,
因为圆+y2=2在直线x=-的右侧,且所求的圆与x轴和直线x=-都相切,所以a>-.
所以r=a+,r=|b|.
又圆心(a,b)在圆+y2=2上,
所以+b2=2,联立
解得
所以所求圆的方程是+(y-1)2=1,
或+(y+1)2=1.
采用待定系数法求圆的方程的一般步骤
(1)选择圆的方程的某一形式.
(2)由题意得a, b, r(或D, E, F)的方程(组).
(3)解出a, b, r(或D, E, F).
(4)代入圆的方程.
1.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数且与直线4x+3y-29=0相切,求圆的方程.
[解] 设圆心为M(m,0)(m∈Z),
由于圆与直线4x+3y-29=0相切,且半径为5,
所以=5,即|4m-29|=25,
因为m为整数,故m=1,
故所求圆的方程为(x-1)2+y2=25.
直线与圆的位置关系
【例2】 已知直线l:2mx-y-8m-3=0和圆C:x2+y2-6x+12y+20=0.
(1)m∈R时,证明l与C总相交;
(2)m取何值时,l被C截得的弦长最短,求此弦长.
[解] (1)证明:直线的方程可化为y+3=2m(x-4),
由点斜式可知,直线过点P(4, -3).
由于42+(-3)2-6×4+12×(-3)+20=-15<0,
所以点P在圆内,故直线l与圆C总相交.