课时分层作业(十四) 平面与平面垂直的判定
(建议用时:45分钟)
一、选择题
1.经过平面α外一点和平面α内一点与平面α垂直的平面有( )
A.0个 B.1个
C.无数个 D.1个或无数个
D [当两点连线与平面α垂直时,可作无数个垂面,否则,只有1个.]
2.下列不能确定两个平面垂直的是( )
A.两个平面相交,所成二面角是直二面角
B.一个平面垂直于另一个平面内的一条直线
C.一个平面经过另一个平面的一条垂线
D.平面α内的直线a垂直于平面β内的直线b
D [如图所示,在正方体ABCDA1B1C1D1中,平面A1B1CD内的直线A1B1垂直于平面ABCD内的一条直线BC,但平面A1B1CD与平面ABCD显然不垂直.]
3.如图,AB是圆的直径,PA垂直于圆所在的平面,C是圆上一点(不同于A、B)且PA=AC,则二面角PBCA的大小为( )
A.60° B.30°
C.45° D.15°
C [由条件得:PA⊥BC,AC⊥BC,又PA∩AC=C,
∴BC⊥平面PAC,∴∠PCA为二面角PBCA的平面角.在Rt△PAC中,由PA=AC得∠PCA=45°,故选C.]
4.如图所示,已知AB⊥平面BCD,BC⊥CD,则图中互相垂直的平面共有( )
A.1对 B.2对
C.3对 D.4对
C [因为AB⊥平面BCD,且AB⊂平面ABC和AB⊂平面ABD,所以平面ABC⊥平面BCD,平面ABD⊥平面BCD. 因为AB⊥平面BCD,所以AB⊥CD. 又因为BC⊥CD,AB∩BC=B,所以CD⊥平面ABC. 因为CD⊂平面ACD,所以平面ABC⊥平面ACD. 故图中互相垂直的平面有平面ABC⊥平面BCD,平面ABD⊥平面BCD,平面ABC⊥平面ACD.]
5.从空间一点P向二面角αlβ的两个面α,β分别作垂线PE,PF,E,F为垂足,若∠EPF=60°,则二面角αlβ的平面角的大小是( )
A.60° B.120°
C.60°或120° D.不确定
C [若点P在二面角内,则二面角的平面角为120°;若点P在二面角外,则二面角的平面角为60°.]
二、填空题
6.已知α,β是两个不同的平面,l是平面α与β之外的直线,给出下列三个论断:①l⊥α,②l∥β,③α⊥β.
以其中的两个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题:________.(用序号表示)
①②⇒③ [由l∥β可在平面β内作l′∥l,又l⊥α,∴l′⊥α,∵l′⊂β,∴α⊥β,故①②⇒③.]
7.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC=1,将△ABC沿斜线BC上的高AD折叠,使平面ABD⊥平面ACD,则BC=________.