2.1 随机抽样
2.1.1 简单随机抽样
学 习 目 标
|
核 心 素 养
|
1.理解简单随机抽样的定义、特点及适用范围.(重点)
2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.(难点)
|
1.通过抽取样本,培养数据分析素养.
2.借助简单随机抽样的定义,培养数学抽象素养.
|
1.简单随机抽样的定义
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.
2.简单随机抽样的方法
(1)抽签法:
把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.
(2)随机数法:
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.
3.抽签法和随机数法的特点
|
优点
|
缺点
|
抽签法
|
简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性
|
仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平
|
随机
数法
|
操作简单易行,它很好地解决了用抽签法当总体中的个数较多时制签难的问题,在总体容量不大的情况下是行之有效的
|
如果总体中的个体数很多,对个体编号的工作量太大,即使用随机数表法操作也不方便快捷
|
1.新华中学为了了解全校302名高一学生的身高情况,从中抽取30名学生进行测量,下列说法正确的是( )
A.总体是302名学生 B.个体是每1名学生
C.样本是30名学生 D.样本容量是30
D [本题是研究学生的身高,故总体、个体、样本数据均为学生身高,而不是学生.]
2.在简单随机抽样中,某一个个体被抽中的可能性( )
A.与第几次抽样有关,第一次抽中的可能性要大些
B.与第几次抽样无关,每次抽中的可能性都相等
C.与第几次抽样有关,最后一次抽中的可能性要大些
D.每个个体被抽中的可能性无法确定
B [在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.]
3.抽签法中确保样本代表性的关键是( )
A.制签 B.搅拌均匀
C.逐一抽取 D.抽取不放回
B [逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.]
4.一个总体共有60个个体,其编号为00,01,02,…,59,现从中抽取一个容量为10的样本,请从随机数表的第8行第11列的数字开始,向右读,到最后一列后再从下一行左边开始继续向右读,依次获取样本号码,直到取满样本为止,则获得的样本号码是________.
附表:(第8行~第10行)
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75
12 86 73 58 07 44 39 52 38 79(第8行)
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38
15 51 00 13 42 99 66 02 79 54(第9行)
57 60 86 32 44 09 47 27 96 54 49 17 46 09 62
90 52 84 77 27 08 02 73 43 28(第10行)
16,55,19,10,50,12,58,07,44,39 [第8行第11列的数字为1,由此开始,依次抽取号码,第一个号码为16,可取出;第二个号码为95>59,舍去.按照这个规则抽取号码,抽取的10个样本号码为16,55,19,10,50,12,58,07,44,39.]