1.关于切线的注意点
在确定曲线在某点处切线的方程时,一定要首先确定此点是否为切点,若此点是切点,则曲线在该点处切线的斜率即为该点的导数值,若此点不是切点,则需应先设切点,再求斜率,写出直线的方程.
2.求函数单调区间的两个关注点
单调区间的求解过程中,应关注两点:(1)不要忽略y=f(x)的定义域;(2)增(减)区间有多个时,用“,”或者用“和”连接,切不可用“∪”连接.
3.函数单调性与导数的关系的注意点
若函数f(x)可导,其导数与函数的单调性的关系现以增函数为例来说明.f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件.
4.可导函数的极值与导数的关系的注意点
x0为极值点能推出f′(x0)=0,但反之不一定.f′(x0)=0是x0为极值点的必要而不充分