【例1】 对一批U盘进行抽检,结果如下表:
抽出件数a
|
50
|
100
|
200
|
300
|
400
|
500
|
次品件数b
|
3
|
4
|
5
|
5
|
8
|
9
|
次品频率
|
|
|
|
|
|
|
(1)计算表中次品的频率;
(2)从这批U盘中任抽一个是次品的概率约是多少?
(3)为保证买到次品的顾客能够及时更换,要销售2 000个U盘,至少需进货多少个U盘?
[思路探究] 结合频率的定义进行计算填表,并用频率估计概率.
[解] (1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.
(2)当抽取件数a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任抽一个是次品的概率约是0.02.
(3)设需要进货x个U盘,为保证其中有2 000个正品U盘,则x(1-0.02)≥2 000,因为x是正整数,
所以x≥2 041,即至少需进货2 041个U盘.
随机事件的概率是指在相同的条件下,大量重复进行同一试验,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫做事件A的概率,记作P(A).它反映的是这个事件发生的可能性的大小.