1.Sn与an的关系
an=
2.等差数列前n项和的性质
(1)等差数列{an}中,其前n项和为Sn,则{an}中连续的n项和构成的数列Sn,S2n-Sn,S3n-S2n,S4n-S3n,…构成等差数列.
(2)数列{an}是等差数列⇔Sn=an2+bn(a,b为常数).
思考1:如果{an}是等差数列,那么a1+a2+…+a10,a11+a12+…+a20,a21+a22+…+a30是等差数列吗?
[提示] (a11+a12+…+a20)-(a1+a2+…+a10)=(a11-a1)+(a12-a2)+…+(a20-a10)
==100d,类似可得(a21+a22+…+a30)-(a11+a12+…+a20)=100d.
∴a1+a2+…+a10,a11+a12+…+a20,a21+a22+…+a30是等差数列.
3.等差数列前n项和Sn的最值
(1)若a1<0,d>0,则数列的前面若干项为负数项(或0),所以将这些项相加即得{Sn}的最小值.
(2)若a1>0,d<0,则数列的前面若干项为正数项(或0),所以将这些项相加即得{Sn}的最大值.
特别地,若a1>0,d>0,则S1是{Sn}的最小值;若a1<0,d<0,则S1是{Sn}的最大值.
思考2:我们已经知道当公差d≠0时,等差数列前n项和是关于n的二次函数Sn=n2+n,类比二次函数的最值情况,等差数列的Sn何时有最大值