1.等比数列1,a,a2,a3,…的前n项和为(  )
A.1+          B.
C.                       D.以上皆错
解析:选D.当a=1时,Sn=n,故选D.
2.等比数列{an}的前n项和为Sn,且4a1,2a2,a3成等差数列.若a1=1,则S4等于(  )
A.7                           B.8
C.15                          D.16
解析:选C.设{an}的公比为q,
因为4a1,2a2,a3成等差数列,
所以4a2=4a1+a3,即4a1q=4a1+a1q2,
即q2-4q+4=0,所以q=2,
又a1=1,所以S4==15,故选C.
3.已知等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=(  )
A.-2                      B.2    
C.3                        D.-3
解析:选A.因为S3+3S2=0,
所以+=0,
即(1-q)(q2+4q+4)=0.解得q=-2或q=1(舍去).
4.设等比数列{an}的前n项和为Sn,已知S3=8,S6=7,则a7+a8+a9=(  )
A.                            B.-