1.已知等差数列{an}中,a2+a4=6,则a1+a2+a3+a4+a5=( )
A.30 B.15
C.5 D.10
解析:选B.因为数列{an}为等差数列,
所以a1+a2+a3+a4+a5=(a2+a4)=×6=15.
2.等差数列{an}中,a2+a5+a8=9,那么关于x的方程:x2+(a4+a6)x+10=0( )
A.无实根 B.有两个相等实根
C.有两个不等实根 D.不能确定有无实根
解析:选A.由于a4+a6=a2+a8=2a5,即3a5=9,
所以a5=3,方程为x2+6x+10=0,无实数解.
3.已知{an},{bn}是两个等差数列,其中a1=3,b1=-3,且a20-b20=6,那么a10-b10的值为( )
A.-6 B.6
C.0 D.10
解析:选B.由于{an},{bn}都是等差数列,
所以{an-bn}也是等差数列,
而a1-b1=6,a20-b20=6,
所以{an-bn}是常数列,故a10-b10=6.故选B.
4.已知{an}是公差为正数的等差数列,a1+a2+a3=15,a1a2a3=80,则a11+a12+a13的值为( )
A.105 B.120
C.90 D.75
解析:选A.由a1+a2+a3=15,得a2=5,所以a1+a3=10.又a1a2a3=80,所以a1a3=16,所以a1=2,a3=8或a1=8,a3=2.又等差数列{an}的公差为正数,所以{an}是递增数列,所以a1=2,a3=8,所以等差数列{an}的公差d=a2-a1=5-2=3,所以a11+a12+a13=3a12=3(a1+11d)=105.
5.若数列{an}为等差数列,ap=q,aq=p(p≠q),则ap+q等于( )