一保高考,全练题型做到高考达标
1.用数学归纳法证明等式“1+2+3+…+(n+3)=(n∈N*) ”,当n=1时,等式应为___________________.
答案:1+2+3+4=
2.利用数学归纳法证明“(n+1)(n+2) …(n+n)=2n×1×3×…×(2n-1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是________.
解析:当n=k(k∈N*)时,
左式为(k+1)(k+2) ·…·(k+k);
当n=k+1时,左式为(k+1+1)·(k+1+2)·…·(k+1+k-1)·(k+1+k)·(k+1+k+1),
则左边应增乘的式子是=2(2k+1).
答案:2(2k+1)
3.(2018·海门实验中学检测)数列{an}中,已知a1=1,当n≥2时,an-an-1=2n-1,依次计算a2,a3,a4后,猜想an的表达式是________.
解析:计算出a2=4,a3=9,a4=16.可猜想an=n2.
答案:an=n2
4.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为________.
解析:1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域.