1.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=( )
A.15 B.12
C.-12 D.-15
解析:选A a1+a2+a3+a4+a5+a6+a7+a8+a9+a10=-1+4-7+10-13+16-19+22-25+28=5×3=15.
2.在数列{an}中,若an+1+(-1)nan=2n-1,则数列{an}的前12项和等于( )
A.76 B.78
C.80 D.82
解析:选B 由已知an+1+(-1)nan=2n-1,得an+2+(-1)n+1an+1=2n+1,得an+2+an=(-1)n(2n-1)+(2n+1),取n=1,5,9及n=2,6,10,结果相加可得S12=a1+a2+a3+a4+…+a11+a12=78.故选B.
3.(2019·开封调研)已知数列{an}满足a1=1,an+1·an=2n(n∈N*),则S2 018等于( )
A.22 018-1 B.3×21 009-3
C.3×21 009-1 D.3×21 008-2
解析:选B ∵a1=1,a2==2,
又==2,
∴=2.
∴a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列,
∴S2 018=a1+a2+a3+a4+a5+a6+…+a2 017+a2 018
=(a1+a3+a5+…+a2 017)+(a2+a4+a6+…+a2 018)
=+=3×21 009-3.故选B.