用动力学与能量观点分析多过程问题
[方法点拨] (1)若运动过程只涉及求解力而不涉及能量,选用牛顿运动定律;(2)若运动过程涉及能量转化问题,且具有功能关系的特点,则常用动能定理或能量守恒定律;(3)不同过程连接点速度的关系有时是处理两个过程运动规律的突破点.
1.(2018·福建省漳州市考前冲刺)如图1所示,倾角θ=37°的光滑且足够长的斜面固定在水平面上,在斜面顶端固定一个轮半径和质量不计的光滑定滑轮D,质量均为m=1kg的物体A和B用一劲度系数k=240N/m的轻弹簧连接,物体B被位于斜面底端且垂直于斜面的挡板P挡住.用一不可伸长的轻绳使物体A跨过定滑轮与小环C连接,轻弹簧轴线和定滑轮右侧的绳均与斜面平行,小环C穿在竖直固定的光滑均匀细杆上.当环C位于Q处时整个系统静止,此时绳与细杆的夹角α=53°,物体B对挡板P的压力恰好为零.已知sin37°=0.6,cos37°=0.8,g取10m/s2.求:
图1
(1)当环C位于Q处时绳子的拉力大小FT和小环C的质量M;
(2)现让环C从位置R由静止释放,位置R与位置Q关于位置S对称,图中SD水平且长度为d=0.2m,求:
①小环C运动到位置Q的速率v;
②小环C从位置R运动到位置S的过程中轻绳对环做的功WT.
2.如图2所示,一个倾角θ=30°的光滑直角三角形斜劈固定在水平地面上,顶端连有一轻质光滑定滑轮.质量为m的A物体置于地面,上端与劲度系数为k的竖直轻弹簧相连.一条轻质绳跨过定滑轮,一端与斜面上质量为m的B物体相连,另一端与弹簧上端连接,调整细绳和A、B物体的位置,使弹簧处于原长状态,且细绳自然伸直并与三角斜劈的两个面平行.现将B物体由静止释放,已知B物体恰好能使A物体刚要离开地面但不继续上升.求:
图2
(1)B物体在斜面上下滑的最大距离x;
(2)B物体下滑到最低点时的加速大小和方向;
(3)若将B物体换成质量为2m的C物体,C物体由上述初始位置静止释放,当A物体刚好要离开地面,C物体的速度大小v.
3.如图3所示,光滑水平轨道的左端与长L=1.25m的水平传送带AB相接,传送带逆时针匀速转动的速度v0=1m/s.轻弹簧右端固定,弹簧处于自然状态时左端恰位于A点.现用质量m=0.4kg的小物块(视为质点)将弹簧压缩后由静止释放,到达水平传送带左端B点后,立即沿切线进入竖直固定的光滑半圆轨道最高点并恰好做圆周运动,经圆周最低点C后滑上质量为M=0.2kg的长木板且不会从木板上掉下来.半圆轨道的半径R=0.5m,小物块与传送带间的动摩擦因数μ1=0.8,小物块与木板间动摩擦因数μ2=0.2,长木板与水平地面间动摩擦因数μ3=0.1,g取10m/s2.求:
图3
(1)小物块到达B点时速度vB的大小(结果可带根号);
(2)弹簧被压缩时的弹性势能Ep;
(3)长木板在水平地面上滑行的最大距离x.