“滑块——木板”模型中的能量问题
[方法点拨] (1)分析滑块与传送带或木板间的相对运动情况,确定两者间的速度关系、位移关系,注意两者速度相等时摩擦力可能变化.(2)用公式Q=Ff·x相对或动能定理、能量守恒求摩擦产生的热量.
1.如图1所示.一足够长的木板在光滑的水平面上以速度v向右匀速运动,现将质量为m的物体竖直向下轻轻地放置在木板右端,已知物体m和木板之间的动摩擦因数为μ,为保持木板的速度不变,从物体m放到木板上到它相对木板静止的过程中,须对木板施一水平向右的作用力F,那么力F对木板做功的数值为( )
图1
A.B.C.mv2D.2mv2
2.(多选)水平地面上固定一倾角为θ=37°的足够长的光滑斜面,如图2所示,斜面上放一质量为mA=2.0kg、长l为3m的薄板A.质量为mB=1.0kg的滑块B(可视为质点)位于薄板A的最下端,B与A之间的动摩擦因数μ=0.5.开始时用外力使A、B静止在斜面上,某时刻给滑块B一个沿斜面向上的初速度v0=5m/s,同时撤去外力,已知重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8.下列说法正确的是( )
图2
A.在滑块B向上滑行的过程中,A、B的加速度大小之比为3∶5
B.从A、B开始运动到A、B相对静止的过程所经历的时间为0.5s
C.从A、B开始运动到A、B相对静止的过程中滑块B克服摩擦力所做的功为J
D.从A、B开始运动到A、B相对静止的过程中因摩擦产生的热量为J
3.如图3所示,一轻弹簧一端与竖直墙壁相连,另一端与放在光滑水平面上的长木板左端接触,轻弹簧处于原长,长木板的质量为M,一物块以初速度v0从长木板的右端向左滑上长木板,在长木板向左运动的过程中,物块一直相对于木板向左滑动,物块的质量为m,物块与长木板间的动摩擦因数为μ,轻弹簧的劲度系数为k,当弹簧的压缩量达到最大时,物块刚好滑到长木板的中点,且相对于木板的速度刚好为零,此时弹簧获得的最大弹性势能为Ep.(已知弹簧形变量为x,弹力做功W=kx2)求:
图3
(1)物块滑上长木板的一瞬间,长木板的加速度大小;
(2)长木板向左运动的最大速度;
(3)长木板的长度.
4.(2018·山东省济南市二模)如图4所示,光滑水平地面的左侧静止放置一长木板AB,右侧固定一足够长光滑斜面CD,木板的上表面与斜面底端C处于同一水平面,木板的质量M=2kg,木板长l=7m.一物块以水平速度v0=9m/s冲上木板的A端,木板向右运动,B端碰到C点时被粘连,且B、C之间平滑连接.物块的质量为m=1kg,可视为质点,与木板之间的动摩擦因数μ=0.45,g取10m/s2,求:
图4
(1)若初始时木板B端距C点的距离足够远,求物块第一次与木板相对静止时的速度和相对木板滑动的距离;
(2)设初始是木板B端距C点的距离为L,试讨论物块最终距C点的距离与L的关系,并求此最大距离.