力的合成与分解
(1)合力及其分力均为作用于同一物体上的力。(√)
(2)合力及其分力可以同时作用在物体上。(×)
(3)几个力的共同作用效果可以用一个力来代替。(√)
(4)在进行力的合成与分解时,都要应用平行四边形定则或三角形定则。(√)
(5)两个力的合力一定比其分力大。(×)
(6)互成角度的两个力的合力与分力间一定构成封闭的三角形。(√)
(7)既有大小又有方向的物理量一定是矢量。(×)
突破点(一) 力的合成问题
1.共点力合成的常用方法
(1)作图法:从力的作用点起,按同一标度作出两个分力F1和F2的图示,再以F1和F2的图示为邻边作平行四边形,画出过作用点的对角线,量出对角线的长度,计算出合力的大小,量出对角线与某一力的夹角确定合力的方向(如图所示)。
(2)计算法:几种特殊情况的共点力的合成。
类 型
|
作 图
|
合力的计算
|
①互相垂直
|
F=
tan θ=
|
②两力等大,夹角为θ
|
F=2F1cos
F与F1夹角为
|
③两力等大且夹角120°
|
合力与分力等大
|
(3)力的三角形定则:将表示两个力的图示(或示意图)保持原来的方向依次首尾相接,从第一个力的作用点,到第二个力的箭头的有向线段为合力。平行四边形定则与三角形定则的关系如图甲、乙所示。
2.合力的大小范围
(1)两个共点力的合成
|F1-F2|≤F合≤F1+F2
即两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小,为|F1-F2|,当两力同向时,合力最大,为F1+F2。
(2)三个共点力的合成
①三个力共线且同向时,其合力最大,为F1+F2+F3。
②任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力最小值为零;如果第三个力不在这个范围内,则合力最小值等于最大的力减去另外两个力。
[题点全练]
1.如图所示为两个大小不变、夹角θ变化的力的合力的大小F与θ角之间的关系图像(0≤θ≤2π),下列说法中正确的是( )
A.合力大小的变化范围是0≤F≤14 N
B.合力大小的变化范围是2 N≤F≤10 N
C.这两个分力的大小分别为6 N和8 N
D.这两个分力的大小分别为2 N和8 N
解析:选C 由题图可知:当两力夹角为180°时,两力的合力为2 N,而当两力夹角为90°时,两力的合力为10 N。则这两个力的大小分别为6 N、8 N,故C正确;D错误。当两个力方向相同时,合力等于两个力之和14 N;当两个力方向相反时,合力等于两个力之差2 N,由此可见:合力大小的变化范围是2 N≤F≤14 N,故A、B错误。