1.给出下列三个类比结论:
①类比ax·ay=ax+y,则有ax÷ay=ax-y;
②类比loga(xy)=logax+logay,则有sin(α+β)=sin αsin β;
③类比(a+b)+c=a+(b+c),则有(xy)z=x(yz).
其中结论正确的个数是( )
A.0 B.1
C.2 D.3
解析:选C.根据指数的运算法则知ax÷ay=ax-y,故①正确;根据三角函数的运算法则知:sin(α+β)≠sin αsin β,②不正确;根据乘法结合律知:(xy)z=x(yz),③正确.
2.观察:(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义域在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于( )
A.f(x) B.-f(x)
C.g(x) D.-g(x)
解析:选D.通过观察可归纳推理出一般结论:若f(x)为偶函数,则导函数g(x)为奇函数.故选D.
3.已知数列:1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,则该数列的第k(k∈N*)项为( )
A.ak+ak+1+…+a2k
B.ak-1+ak+…+a2k-1
C.ak-1+ak+…+a2k
D.ak-1+ak+…+a2k-2
解析:选D.由已知数列的前4项归纳可得,该数列的第k项是从以1为首项,a为公比的等比数列的第k项ak-1开始的连续k项的和,故该数列的第k项为ak-1+ak+…+a2k-2.