第3节动量守恒定律
[随堂检测]
1.(多选)如图所示,A、B两物体质量之比mA∶mB=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则( )
A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量守恒
B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统的动量守恒
C.若A、B所受的摩擦力大小相等,A、B组成的系统的动量守恒
D.若A、B所受的摩擦力大小相等,A、B、C组成的系统的动量守恒
解析:选BCD.如果A、B与平板车上表面的动摩擦因数相同,弹簧释放后,A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力fA向右,fB向左,由于mA∶mB=3∶2,所以fA∶fB=3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,A选项错误;对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力和支持力,它们的合力为零,故该系统的动量守恒与平板车间的动摩擦因数或摩擦力是否相等无关,故B、D选项正确;若A、B所受的摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,C选项正确.
2.如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中( )
A.动量守恒,机械能守恒 B.动量不守恒,机械能不守恒
C.动量守恒,机械能不守恒 D.动量不守恒,机械能守恒
解析:选B.在子弹射入木块时,存在剧烈摩擦作用,有一部分能量将转化为内能,机械能不守恒.实际上,在子弹射入木块这一瞬间过程,取子弹与木块为系统则可认为动量守恒(此瞬间弹簧尚未形变).子弹射入木块后木块压缩弹簧过程中,机械能守恒,但动量不守恒(墙壁对弹簧的作用力是系统外力,且外力不等于零).若以子弹、木块和弹簧合在一起为研究对象(系统),从子弹射入木块到弹簧压缩至最短时,弹簧固定端墙壁对弹簧有外力作用,因此动量不守恒,故选项B正确.
3.(多选)如图所示,木块A静置于光滑的水平面上,其曲面部分MN光滑,水平部分NP粗糙.现有一物体B自M点由静止下滑,设NP足够长,则以下叙述正确的是 ( )
A.A、B最终以同一不为零的速度运动
B.A、B最终速度均为零
C.A物体先做加速运动,后做减速运动
D.A物体先做加速运动,后做匀速运动
解析:选BC.对于木块A和物体B组成的系统,由于在水平方向不受外力,故系统在水平方向动量守恒.因系统初动量为零,A、B在任一时刻的水平方向动量之和也为零,又因NP足够长,B最终与A速度相同,此速度为零,选项B正确;A物体由静止到运动、最终速度又为零,选项C正确.
4.光滑水平轨道上有三个木块A、B、C,质量分别为mA=3m、mB=mC=m,开始时B、C均静止,A以初速度v0向右运动,A与B碰撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.求B与C碰撞前B的速度大小.
解析:法一:把A、B、C看成一个系统,整个过程中由动量守恒定律得
mAv0=(mA+mB+mC)v
B、C碰撞过程中由动量守恒定律
mBvB=(mB+mC)v
联立解得vB=v0.
法二:设A与B碰撞后,A的速度为vA,B与C碰撞前B的速度为vB,B与C碰撞后粘在一起的速度为v,由动量守恒定律得
对A、B木块:mAv0=mAvA+mBvB①
对B、C木块:mBvB=(mB+mC)v②
由题意A与B间的距离保持不变可知vA=v③
联立①②③式,代入数据得vB=v0.
答案:v0
5.结冰的湖面上有甲、乙两个小孩分别乘冰车在一条直线上相向滑行,速度大小均为v1=2 m/s,甲与车、乙与车的质量和均为M=50 kg.为了使两车不会相碰,甲将冰面上一质量为5 kg的静止冰块以v2=6 m/s(相对于冰面)的速率传给乙,乙接到冰块后又立即以同样的速率将冰块传给甲,如此反复,在甲、乙之间至少传递几次,才能保证两车不相碰?(设开始时两车间距足够远)