1.在等差数列{an}中,a9+a11=10,则数列{an}的前19项和为( )
A.98 B.95
C.93 D.90
解析:S19====95.
答案:B
2.已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和等于( )
A.-6(1-3-10) B.(1-3-10)
C.3(1-3-10) D.3(1+3-10)
解析:由=-,由a2=-,∴a1=4,
∴Sn=3,令n=10得S10=3(1-3-10).
答案:C
3.已知{an}是等比数列,a2=2,a5=,则a1a2+a2a3+…+anan+1=( )
A.16(1-4-n) B.16(1-2-n)
C.(1-4-n) D.(1-2-n)
解析:由=q3==知q=,而新的数列{anan+1}仍为等比数列,且公比为q2=.
又a1a2=4×2=8,
故a1a2+a2a3+…+anan+1==(1-4-n).
答案:C
4.数列{an},{bn}满足anbn=1,an=n2+3n+2,则{bn}的前10项和为( )
A. B.
C. D.