1.等差数列a-2d,a,a+2d,…的通项公式是( )
A.an=a+(n-1)d B.an=a+(n-3)d
C.an=a+2(n-2)d D.an=a+2nd
解析:数列的首项为a-2d,公差为2d,∴an=(a-2d)+(n-1)·2d=a+2(n-2)d.
答案:C
2.已知数列3,9,15,…,3(2n-1),…,那么81是它的第几项( )
A.12 B.13
C.14 D.15
解析:由已知数列可知,此数列是以3为首项,6为公差的等差数列,∴an=3+(n-1)×6=3(2n-1)=6n-3,由6n-3=81,得n=14.
答案:C
3.在等差数列{an}中,a2=-5,a6=a4+6,则a1等于( )
A.-9 B.-8
C.-7 D.-4
解析:法一:由题意,得解得a1=-8.
法二:由an=am+(n-m)d(m,n∈N*),
得d=,
∴d===3.
∴a1=a2-d=-8.
答案:B
4.在数列{an}中,a1=1,an+1=an+1,则a2 017等于( )
A.2 009 B.2 010
C.2 018 D.2 017
解析:由于an+1-an=1,则数列{an}是等差数列,且公差d=1,则an=a1+(n-1)d=n,故a2 017=2 017.
答案:D
5.若等差数列{an}中,已知a1=,a2+a5=4,an=35,则n=( )
A.50 B.51
C.52 D.53