1.函数与映射的概念
|
函数
|
映射
|
两集合
A,B
|
设A,B是两个非空的数集
|
设A,B是两个非空的集合
|
对应
关系
f:A→B
|
如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应
|
如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应
|
名称
|
称f:A→B为从集合A到集合B的一个函数
|
称对应f:A→B为从集合A到集合B的一个映射
|
记法
|
y=f(x),x∈A
|
对应f:A→B是一个映射
|
2.函数的有关概念
(1)函数的定义域、值域:
在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.
(2)函数的三要素:定义域、值域和对应关系.
(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.
(4)函数的表示法
表示函数的常用方法有:解析法、图象法、列表法.
3.分段函数
若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.
1.(2018·台州模拟)下列四组函数中,表示相等函数的是( )
A.f(x)=x2,g(x)=
B.f(x)=,g(x)=
C.f(x)=1,g(x)=(x-1)0
D.f(x)=,g(x)=x-3
解析:选B 选项A中,f(x)=x2与g(x)=的定义域相同,但对应关系不同;选项B中,二者的定义域都为{x|x>0},对应关系也相同;选项C中,f(x)=1的定义域为R,g(x)=(x-1)0的定义域为{x|x≠1};选项D中,f(x)=的定义域为{x|x≠-3},g(x)=x-3的定义域为R.
2.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )
答案:B