1.(2017届湖南省长沙市雅礼中学模拟)已知数列{an}中,a1=1,a3=9,且an=an-1+λn-1(n≥2,n∈N*).
(1)求λ的值及数列{an}的通项公式;
(2)设bn=(-1)n(an+n),且数列{bn}的前2n项和为S2n,求S2n.
解 (1)∵a1=1,a3=9,且an=an-1+λn-1(n≥2,n∈N*),
∴a2=2λ,a3=5λ-1=9,解得λ=2,
∴an-an-1=2n-1(n≥2,n∈N*),
∴an=(2n-1)+(2n-3)+…+3+1
==n2.
(2)bn=(-1)n(an+n)=(-1)n(n2+n),
b2n-1+b2n=-[(2n-1)2+(2n-1)]+[(2n)2+2n]=4n,
S2n=4×=2n2+2n.