(本小题满分12分)已知函数f(x)=2sin·cos-sin(x+π).
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.
[思路点拨] (1)先逆用倍角公式,再利用诱导公式、辅助角公式将f(x)化为正弦型函数,然后求其周期.
(2)先利用平移变换求出g(x)的解析式,再求其在给定区间上的最值.
[规范解答] (1)f(x)=2sin·cos-sin(x+π)3分
=cos x+sin x=2sin,5分
于是T==2π.6分