过点A(-5,-4)作一直线l,使它与两坐标轴相交且与两轴所围成的三角形的面积为5,求直线l的方程.
【精彩点拨】 已知直线过定点A,且与两坐标轴都相交,围成的直角三角形的面积已知.求直线方程时可采用待定系数法,设出直线方程的点斜式,再由面积为5列方程,求直线的斜率.
【规范解答】 由题意知,直线l的斜率存在.设直线为y+4=k(x+5),交x轴于点,交y轴于点(0,5k-4),
S=××|5k-4|=5,
得25k2-30k+16=0(无实根),或25k2-50k+16=0,
解得k=,或k=,
所以所求直线l的方程为2x-5y-10=0,或8x-5y+20=0.