用户名: 密码:  用户登录   新用户注册  忘记密码  账号激活
您的位置:教学资源网 >> 试题 >> 数学试题
高中数学编辑
备战2011高考数学02――黄冈中学压轴题跟踪演练系列二
下载扣金币方式下载扣金币方式
需消耗0金币 立即下载
0个贡献点 立即下载
0个黄金点 立即下载
VIP下载通道>>>
提示:本自然月内重复下载不再扣除金币
  • 资源类别试题
    资源子类二轮复习
  • 教材版本不限
    所属学科高中数学
  • 适用年级高三年级
    适用地区全国通用
  • 文件大小211 K
    上传用户ac186186
  • 更新时间2011/4/8 17:35:47
    下载统计今日0 总计197
  • 评论(0)发表评论  报错(0)我要报错  收藏
1
0
资源简介

1. (本小题满分12分)
已知常数a > 0, n为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x的函数.
(1) 判定函数f n ( x )的单调性,并证明你的结论.
(2) 对任意n ³ a , 证明f `n + 1 ( n + 1 ) < ( n + 1 )fn`(n)
解: (1) fn `( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] ,
∵a > 0 , x > 0, ∴ fn `( x ) < 0 , ∴ f n ( x )在(0,+∞)单调递减. 4分
(2)由上知:当x > a>0时, fn ( x ) = xn – ( x + a)n是关于x的减函数,

  • 暂时没有相关评论

请先登录网站关闭

  忘记密码  新用户注册