学案26 平面向量的数量积
编制:纪凯 审核:高三数学组 姓名:
【导学引领】
考点梳理
1.两个向量的夹角
已知两个非零向量a和b(如图),作=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角,当θ=0°时,a与b同向;当θ=180°时,a与b反向;如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b.
2.平面向量的数量积
已知两个非零向量a和b,它们的夹角为θ,我们把数量|a||b|·cos θ叫做向量a和b的数量积(或内积),记作a·b=|a||b|·cos θ.
规定:零向量与任一向量的数量积为0.
3.平面向量数量积的几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ 的乘积.
4.平面向量数量积的重要性质
(1)e·a=a·e=|a|cos θ;
(2)非零向量a,b,a⊥b⇔a·b=0;