学案47 立体几何中的向量方法(Ⅰ)——证明平行与垂直
编制:纪凯 审核:高三数学组 班级: 姓名:
【导学引领】
(一)考点梳理
1.直线的方向向量与平面的法向量
(1)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称为直线l的方向向量,与平行的任意非零向量也是直线l的方向向量.
(2)平面的法向量:可利用方程组求出,设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为
2.用向量证明空间中的平行关系
(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔ v1∥v2.
(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=xv1+yv2.
(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.
(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.
3.用向量证明空间中的垂直关系