考点一 等比数列中的运算问题
1.(2015·新课标全国Ⅱ,4)已知等比数列{an}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )
A.21 B.42 C.63 D.84
解析 设等比数列{an}的公比为q,则由a1=3,a1+a3+a5=21得3(1+q2+q4)=21,解得q2=-3(舍去)或q2=2,于是a3+a5+a7=q2(a1+a3+a5)=2×21=42,故选B.
答案 B
2.(2014·重庆,2)对任意等比数列{an},下列说法一定正确的是( )
A.a1,a3,a9成等比数列 B.a2,a3,a6成等比数列
C.a2,a4,a8成等比数列 D.a3,a6,a9成等比数列
解析 由等比数列的性质得,a3·a9=a≠0,因此a3,a6,a9一定成等比数列,选D.
答案 D
3.(2013·江西,3)等比数列x,3x+3,6x+6,…的第四项等于( )