3.1.2复数的几何意义
[提出问题]
平面直角坐标系内的点与有序实数对之间的关系是一一对应的,即平面直角坐标系内的任一点对应着一对有序实数;任一对有序实数,在平面直角坐标系内都有唯一的点与它对应.
问题1:复数z=a+bi(a,b∈R)与有序实数对(a,b)有怎样的对应关系?
提示:一一对应.
问题2:有序实数对与直角坐标平面内的点有怎样的对应关系?
提示:一一对应.
问题3:复数集与平面直角坐标系中的点集之间能一一对应吗?
提示:由问题1,2可知能一一对应.
[导入新知]
1.复平面
建立直角坐标系来表示复数的平面叫做复平面.
x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数.
2.复数的几何意义
(1)复数z=a+bi(a,b∈R)一一对应复平面内的点Z(a,b);
(2)复数z=a+bi(a,b∈R)一一对应平面向量=(a,b).
3.复数的模