3.2.2复数代数形式的乘除运算
[导入新知]
1.复数的乘法
设z1=a+bi,z2=c+di是任意两个复数,那么它们的积(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(ad+bc)i(a,b,c,d∈R).
2.复数乘法的运算律
对于任意z1,z2,z3∈C,有
交换律
|
z1·z2=z2·z1
|
结合律
|
(z1·z2)·z3=z1·(z2·z3)
|
乘法对加法的分配律
|
z1(z2+z3)=z1z2+z1z3
|
[化解疑难]
对复数乘法的理解
(1)复数的乘法与多项式乘法是类似的,有一点不同即必须在所得结果中把i2换成-1,再把实部、虚部分别合并.
(2)两个复数的积仍然是一个复数,可推广到任意多个复数,任意多个复数的积仍然是一个复数.
[提出问题]
问题1:复数z1=a+bi与z2=a-bi(a,b∈R)有什么关系?
提示:两复数实部相等,虚部互为相反数.
问题2:试求z1=a+bi,z2=a-bi(a,b∈R)的积.
提示:z1z2=a2+b2,积为实数.
问题3:如何规定两复数z1=a+bi,z2=c+di(a,b,c,d∈R,c+di≠0)相除?