点评1.回归定义,充分运用已知条件:x>0时,f(x)>0△x=x2-x1>0,f(x2-x1)>1
2.等价转化思想:运用函数的单调性,去掉函数符号,转化为解关于m的不等式。
思路:联想幂的运算性质,可看作指数函数的抽象,结合指数函数的图象和性质进行解题。
抽象函数问题,需要综合运用函数的奇偶性,单调性,周期性,对称性等性质,应用分析,逻辑推理,联想类比等数学思想方法。
常见题型有:
①求抽象函数的某一函数值:根据函数结构特征,用赋值法。
②判(证)抽象函数的单调性:类比所学具体函数,充分运用已知条件,对变量合理赋值。
③解关于抽象函数的不等式:一看定义域,一看单调性。
只要掌握相应的解题策略,问题便会化难为易,迎刃而解。