13.极限
考试内容:
数学归纳法.数学归纳法的应用.
数列的极限.
函数的极限.极限的四则运算.函数的连续性.
考试要求:
(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
(2)了解数列极限和函数极限的概念.
(3)掌握极限的四则运算法则.会求某些数列与函数的极限.
(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质.
14.导数
考试内容:
导数的概念.导数的几何意义.几种常见函数的导数.
两个函数的和、差、积、商的导数.复合函数的导数.基本导数公式.
利用导数研究函数的单调性和极值.函数的最大值和最小值.
考试要求:
(1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.
(2)熟记基本导数公式(c,xm(m为有理数),sinx,cosx,ex,ax,lnx,logax的导数);掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.
(3)理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.
15.数系的扩充——复数
考试内容:
复数的概念.
复数的加法和减法.
复数的乘法和除法.
数系的扩充.
考试要求:
(1)了解复数的有关概念及复数的代数表示和几何意义.
(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.
(3)了解从自然数系到复数系的关系及扩充的基本思想.
Ⅳ.考试表式与试卷结构
考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.
全试卷包括Ⅰ卷和Ⅱ卷.Ⅰ卷为选择题;Ⅱ卷为非选择题.
试卷一般包括选择题、填空题和解答题等题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程.
试卷应由容易题、中等难度题和难题组成,总体难度要适当,并以中等难度题为主.